WELCOME

8TH ANNUAL CA WATER DATA SUMMIT

INTELLIGENT QUESTIONING (IQ) SHARING WATER WISDOM

SEPTEMBER 7&8, 2023

STANFORD UNIVERSITY | PALO ALTO, CA

#CAWaterDataSummit #IntelligentQuestioning

DAY ONE 11:30AM - 12:30PM

SNOWPACK MONITORING AND WATER SUPPLY FORECASTING: EMERGING TECHNOLOGIES & MODELING IMPROVEMENTS: WHAT ARE EMERGING TECHNOLOGIES AND MODELING FOR EFFECTIVE SUPPLY FORECASTING?

Lindsay McPhail

Associate Resource Specialist, Metropolitan Water District of Southern California

Brad Coffey Water Resources Management Group Manager, Metropolitan Water District of Southern California

Thomas H. Painter, PhD Founder/CEO, Airborne Snow Observatories, Inc.

Andrew Schwartz Lead Scientist/Station Manager, University of California, Berkeley -Central Sierra Snow Laboratory

8TH ANNUAL CA WATER DATA SUMMIT INTELLIGENT QUESTIONING (IQ) SHARING WATER WISDOM SEPTEMBER 7&8, 2023

STANFORD UNIVERSITY | PALO ALTO, CA CaWaterDataSummit.org

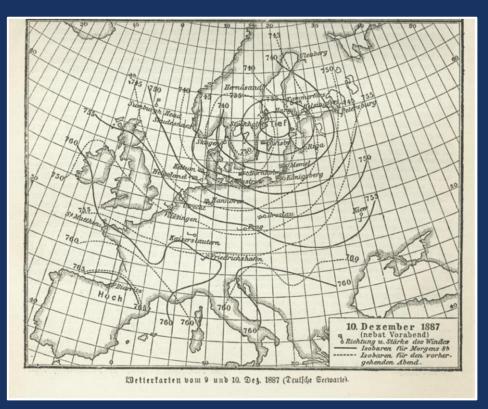
#CAWaterDataSummit #IntelligentQuestioning

Advancements in Snowpack Monitoring and Decision Support

Andrew Schwartz

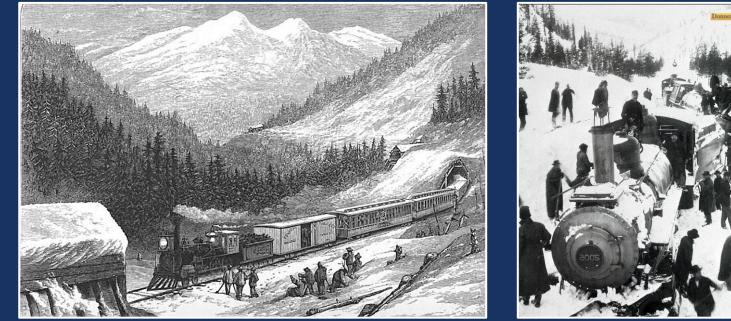
Lab Director UC Berkeley Central Sierra Snow Lab

Late 1800s Notable History



Source: Library of Congress

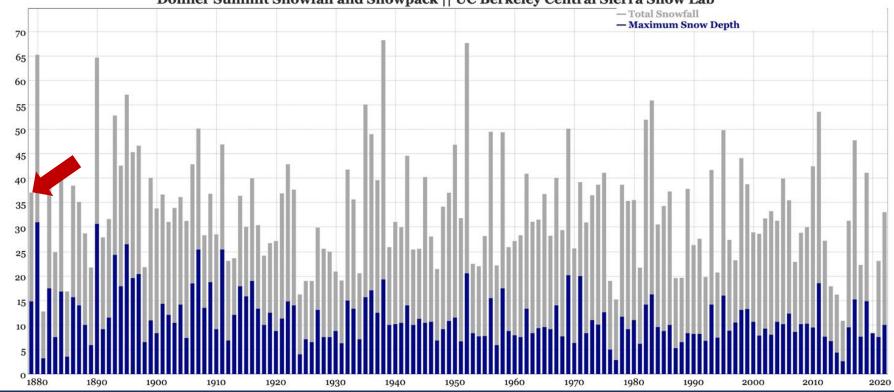
Late 1800s Notable History



Wednesday, July 31, S to 9 a.m.	B.	E.	M.	L REPO	F.	a.	I .	g
Naim	29.54	57	56	W.S.W.	6	9	0.	3
Aberdeen	29.60	59	54	S.S.W.	5	1	b.	3
Leith	29.70	61	55	W.	3	5	. C.	2
Berwick	29.69	59	55	W.S.W.	4	4	c.	12
Ardrossan	29.73	57	55	W.	5	4	o.	5
Portrush	29.73	57	54	S.W.	2	2	b.	2
Shields	29.80	59	54	W.S.W.	4	5	0.	3
Galway	29.83	65	62	W.	5	4	c.	4
Scarborough	20.86	59	56	W.	3	6	c.	2
Liverpool	29.91	61	56	S.W.	. 2	8	с.	2
Valentia	29.87	62	60	S.W.	2	5	0.	3
Quecostown	29.88	61	59	W.	3	5	c.	2
Yarmouth	30.05	61	59	W.	5	2	c.	3
London	30.02	62	56	S.W.	3	2	b.	1_
Dover	30.01	70	61	8.17	3	7	0.	2
Portsmouth	30.01	61	59	W.	3	6	0.	2
Portland	30.03	63	59	8.W.	3	2	0.	3
Plymouth	30.00	62	59	W.	5	ī	b.	4
Penzance	30.04	61	60	S.W.	2	6	· C.	3
Copenhagen	29.94	64	-	W.S.W.	3	6	c.	3
Helder	29.99	63	-	W.S.W.	6	5	с.	3
Brest	30.09	60	-	S.W.	2	6	Te.	5
Bayonne	30.13	68	-	-	_	9	m.	5
Lisbon	30.18	70	-	N.N.W.	4	3	b.	2
General weath North-Moder West-Modera South-Fresh B. Barometer,	ate west te south westerly	erly wi -weste ; fine. Ea	ind ; fi rly ; fi cplana	ne. ne. tion.				
each 10 feet of w diminution, and increase. E. E. (for evaporation two points <i>left</i> Oloud (1 to 9). f., fog; h., hall; r., rain; s., snow	ertical r each 1 rposed and d of mag	ise ca 0° abo thermo lew-po netib).	using we 32 ^e ometer int). F.	about one- causing ne in shade. D. Direct	hundr arly ti M. ion o	edth hree-l Mois f wi	of an hundre tened nd (ta	inc edth bul

Source: UK Met Office

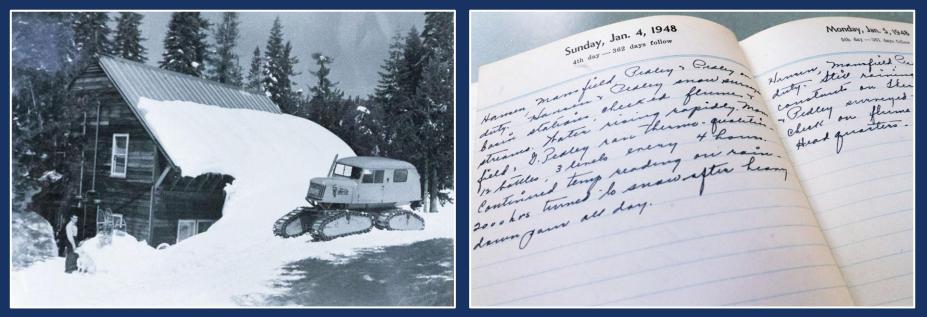
Marolasce


Late 1800s Notable History

Source: Donner Summit Historical Society

Feet

Dr. James E. Church

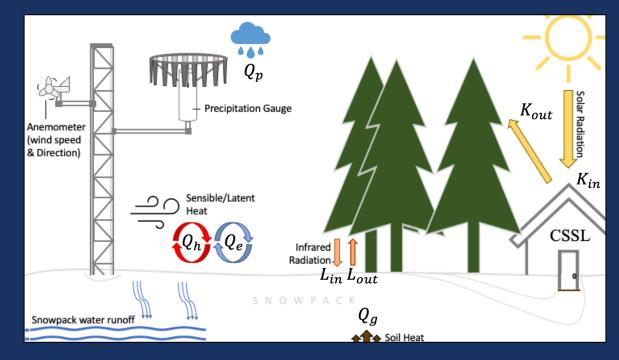


Conducting Onion Creek Snow Survey

Central Sierra Snow Lab (CSSL) Est. 1946

Continued measurements that had already been occurring on Donner Summit for decades

Snowpack Monitoring Advancements: Depth, Density, SWE



Snowpack Monitoring Advancements: Energy Balance

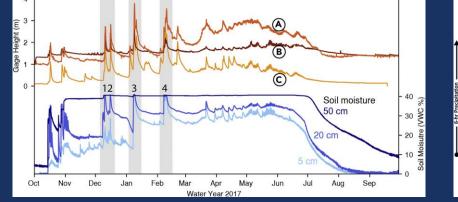
 $\overline{\Delta Q_i = Q_h + Q_e + Q_g} + Q_p + (K_{in} - K_{out}) + (L_{in} - L_{out})$

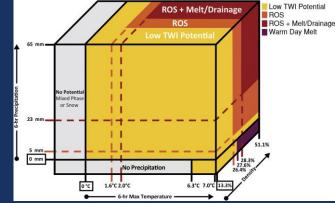
Energy Balance: Instrumentation and Measurement

EC150 – 3D Sonic Anemometer and Gas Analyzer

CNR4 – 4 Way Radiation – Up/Down Pyranometer and Pyrgeometer

HMP155 – Temp/RH w/ Shield




HFP01 – Soil and Surface Heat Flux

Snowpack Decision Support

Better measurement and monitoring capabilities have enabled decision support tools

- Inflows and peak flows
- Flooding potential

Heggli et al. 2022

Snowpack Decision Support

Decision support through modelling allows:

- Departure from reliance on 'average' snowpack conditions and planning.
- Greater understanding of spatial variability.

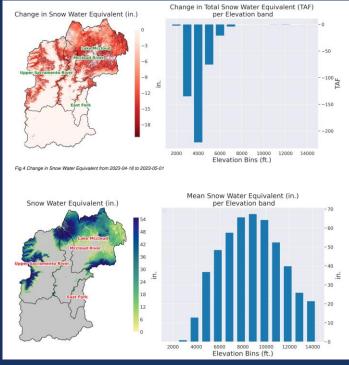
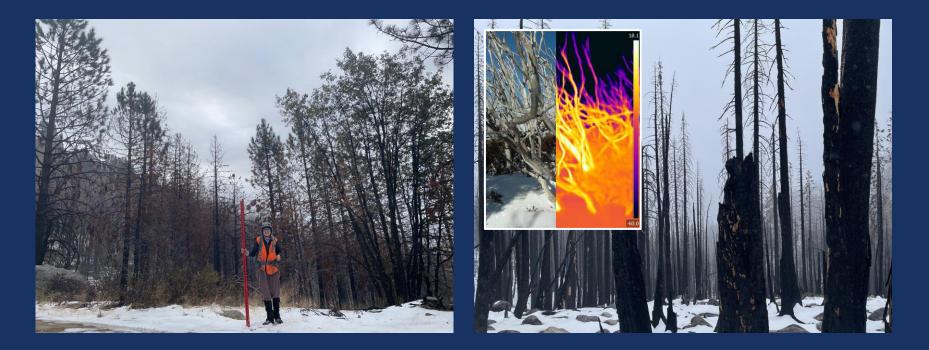
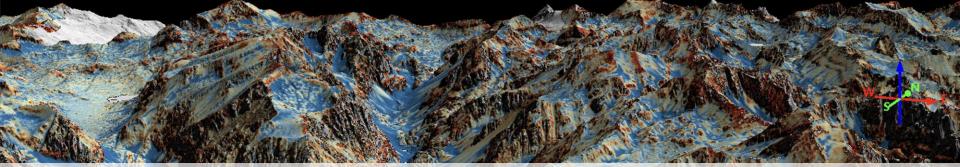



Image credit: iSNOBAL data from M3 Works

Decision Support for Compound Events



Thank you

Airborne Snow Observatories

Full-watershed snow mapping and forecasting for decision support

Thomas H. Painter | Airborne Snow Observatories, Inc.

ASO Snow Depth Kings River, CA February 2, 2023

Living at the new crossroads

The New York Times

World V Business V Markets V Sustainability V More

United States

Record California snowpack bounty poses renewed flood risks

Reminder: Snowpack represents 70-80% of the annual precipitation falling on the West and California

the West, officials ruled projects already approv

In

A Breakthrough Deal to Keep the Colorado River From Going Dry, for Now

The agreement on cuts, aided by a wet winter and \$1.2 billion in federal payments, expires at the end of 2026.

Doopers Dodgers pitcher Julio Urias arrested on suspicion of domestic violence Californians can now carry driver's license

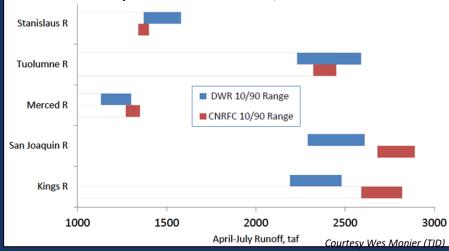
Plaschke: Julio Urías simply cannot be allo to pitch again for the Dodgers

their phone as part of pilot program

CALIFORNIA Hillary 'reshaped the landscape' of Death

storm damage closes park, maybe for mon

COMPANY TOWN


Why Hollywood's labor nightmare won't en soon: Frustration, fear and mistrust

ADVERTISEMENT

History is an increasingly poor guide to the present

- forecasts based on historic data assume that calibrations apply to current conditions
- forecast uncertainty requires a wide margin
- accurate & complete SWE mapping is a foundation for reduced forecast uncertainty

CA DWR Bulletin 120 & CA/NV River Forecast Center Apr-Jul Runoff Forecasts, May 2017

Temperature & precip changes

		April Foreca st	In	bs flo w	% Difference
	1999	120	1	97	-39%
	2000	155	1	59	-2%
	2001	150	1	46	3%
	2002	59		57	4%
818	2003	170	1	73	-2%
	2004	100	-	78	28%
	2005	125	1	20	4%
	2006	210	1	76	19%
	2007	150	1	77	-15%
1º1	2008	200	1	95	2%
	2009	180	1	92	-6%
	2010	120	1	42	-15%
5	2011	225	2	72	-17%
~	2012	100	6	54	56%
4	2013	100	1	34	-25%
9	2014	250	2	42	3%
	2015	166	2	02	-18%
	2016	167	1	57	7%
	2017	195	1	84	6%
Foreca		ecast > 10	%	Fo	recast > 10%

NASA missions have clarified the water cycle IRBORNE SA Precipitation Rainfall Snowfall ERVATOR - The GRACE-FO Mission Groundwater SMAP SOIL MOISTURE **Evapotranspiration** IRESS Runoff Observation Forecasting

Airborne Snow Observatories, Inc.

mapping the most critical snow properties and forecasting runoff volume & timing

Snow Water Equivalent

Snow depth from lidar elevation SWE from coupling with obs & modeled density

Snow Albedo

HySpex VSWIR spectrometers Albedo & surface properties

Physical Modeling

Coupled lidar & spectrometer Physical snowpack & runoff modeling (iSnobal + WRF-Hydro)

Operations

Unique high-altitude operations Unique rapid product turnaround

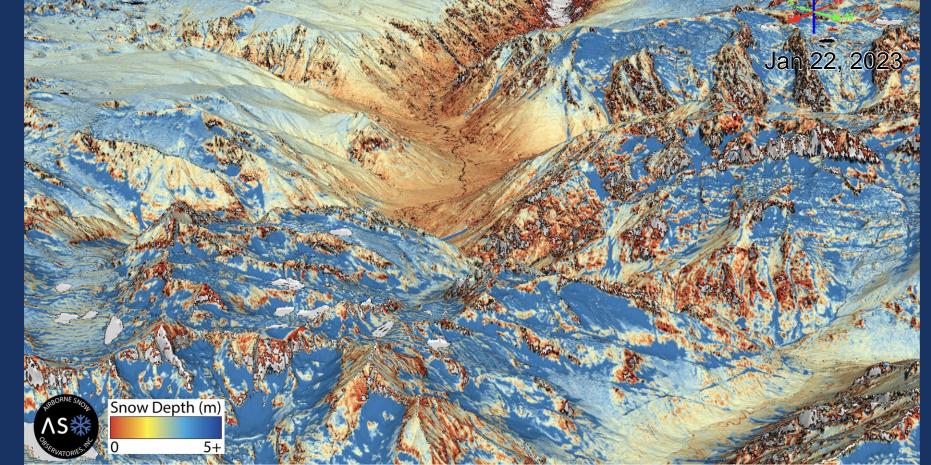
Community WRF-Hydro Modeling Ecosystem

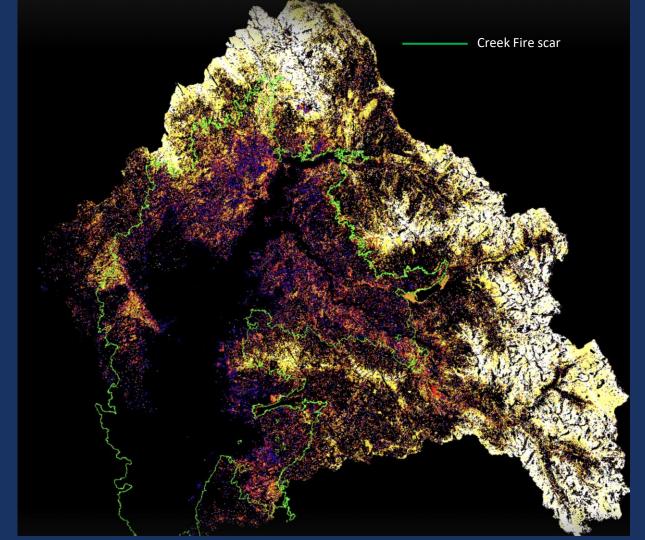
- State of the art column land surface thermodynamics
- Dynamic, hyper-resolution terrestrial overland, sub-surface and channel routing
- Multi-spatial framework support
- Current configuration using 1km column physics with 250m terrain routing

slide courtesy Dave Gochis, NCAR

Kings River, CA

Jan 22, 2023



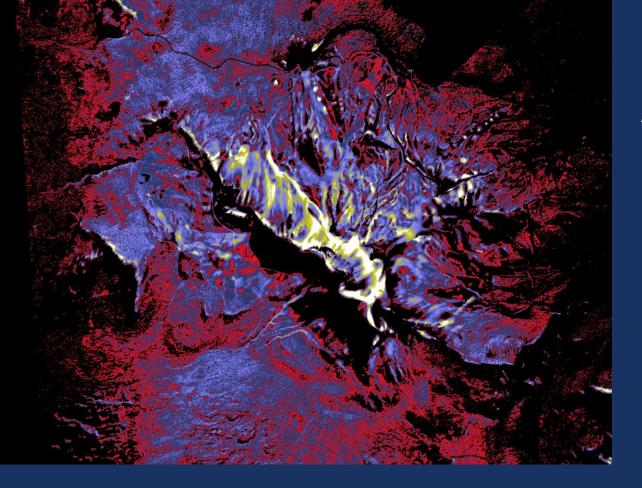

5+

0

SERVATORY

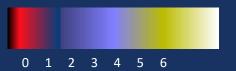
Kings River, CA

Visible Albedo San Joaquin Basin, CA 14 April 2023



Mammoth Mountain Ski Area

2 July 2023


Acquisition under contract with CA Department of Water Resources and CA Office of Emergency Services

Mammoth Mountain Ski Area

2 July 2023

Acquisition under contract with CA Department of Water Resources and CA Office of Emergency Services

Snow Depth (m)

ASO Program Evolution

2012 – First flights – partnership with NEON 2013 – First snow flights – NASA HQ support 2013 – JPL Riegl & itres CASI instrument purchases 2013 – Funding support from State of CA 2015 – Funding support from State of CO 2015 – NSIDC begins data archive & distribution

2016 – WSL/SLF Switzerland demo project

2016 – Science support from DoE, USFS

2017 – Southern Sierra Nevada extension

2019 - Transition to Airborne Snow Observatories, Inc.

2019 – Strategic Partnership with M3W & QSI/NV5

2020 – Strategic Partnership with Esri

2020 – First season as ASO Inc.


2020 - Strategic Partnership with NCAR for WRF-Hydro hydrologic modeling

2020 – ASO-specific Federal and State (CA) Legislation

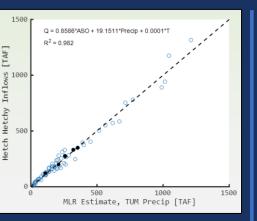
2022 – Grew to multiple ASOs

2022 – Added VSWIR imaging spectrometers

2022 – International implementation

19913 - 2-1144

quantur

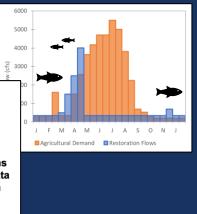


Wide-range of decision-support applications

Reservoir operations

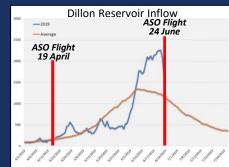
- Robust AJRO predictor
- lower bound confidence allowed ecology flows in drought years

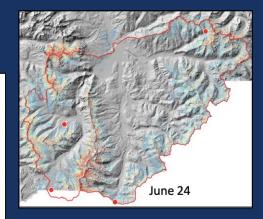
Proactive flood management


 Kings River, CA – 2019: flood designation avoided using ASO SWE volume guidance

•	met supply obligations avoided costly water lease		Apr-Jul Runoff Forecast Exceedance				
		Forecasts	10%	50%	90%		
		CA DWR	2.1 MAF	1.8 MAF	1.6 MAF		
		NOAA RFC	2.3 MAF	2.1 MAF	1.9 MAF		
		ASO		2.5 MAF			

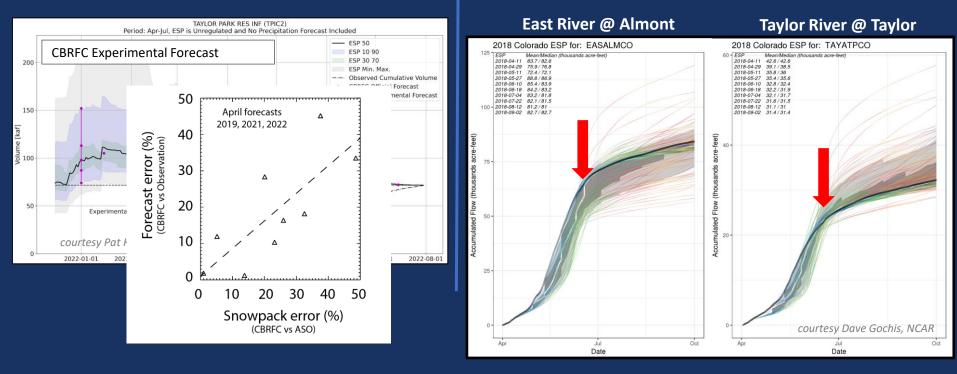
Ecologic & In-stream flows


- fish flow timing
- dam release ramping



Reservoir operations timing

- Dillon Reservoir 2019
- captured 2nd runoff peak

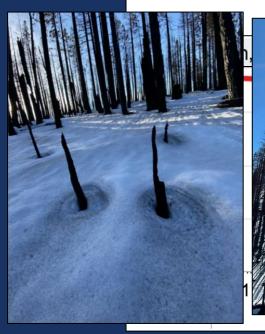

Operational forecast integration

NWS River Forecast Center testing/evaluation

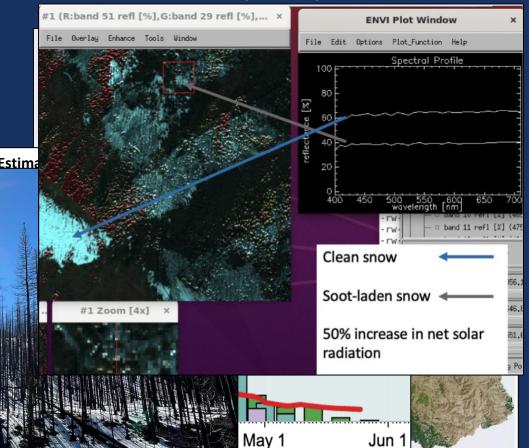
- experimental SNOW-17 forecasts with ASO ingest
- ASO validation of RFC SWE volumes

WRF-Hydro forecast with ASO data assimilation

- distributed, physics-based model
- ASO SWE ingest enforces spatial distribution of snow


Adaptation in practice: Feather River, CA, 2022

Early warning of low snowpack


- snowpack peaked Jan 1st
- overestimated by conventional products

Wildfire impacts on hydrology

- >60% of basin burned in 4 years
- Large snow albedo reduction from soot

2022 SWE Volume Estima

The audit points to full ASO implementation

Department of Water Resources

Its Forecasts Do Not Adequately Account for Climate Change and Its Reasons for Some Reservoir Releases Are Unclear

May 25, 2023 **2022-106**

The Governor of California
President pro Tempore of the Senate
Speaker of the Assembly
State Capitol

SUMMARY

Climate change has had significant ramifications for the State's water supply, and researchers project that its effects will increase in the future. Nonetheless, the Department of Water Resources (DWR) has been slow to account for the effects of climate change on key responsibilities related to managing the State's water resources.

For example, one of DWR's responsibilities is to develop water supply forecasts on which both state and local water agencies rely. However, DWR has not adequately ensured that its forecasts account for the effects of climate change. Similarly, it has not

May 25, 2023

DWR Has Not Adequately Ensured That Its Water Supply Forecasts Account for the Effects of Climate Change DWR invested in ASO starting in 2013 and has done so since. They have tried to get the adequate funding for the complete program but have struggled. The complete program is ASO with its physical snowpack constraint and physicallybased runoff forecasting WRF-Hydro.

California Water Data Summit Snowpack and Water Supply Data for Metropolitan Water District

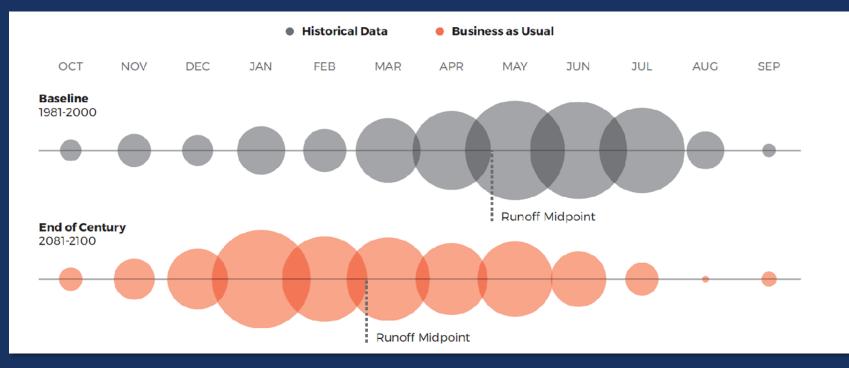

Brad Coffey, Water Resource Manager September 7, 2023

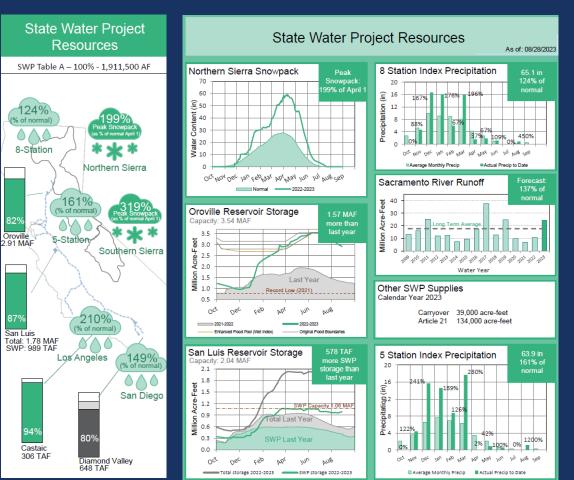
Metropolitan Water District's Sources of Supplies

Historic Swings in State Water Project Availability

Note:2023 end-of-year balance is preliminary as they are subject to DWR adjustments and USBR final accounting.

Million Acre-Feet


Multi-Purpose Storage Reservoirs – Lake Oroville



California's Water Infrastructure Challenge

Reich, K.D., *et al.* (2018). Climate Change in the Sierra Nevada: California's Water Future.

Metropolitan's Water Supply Conditions Report

Pre-Experiencing Our Future

Climate Adaptation Master Plan for Water Reliability Resilience Affordability Financial Sustainability

CONNECT WITH US!

Stanford Visitor (no password needed)

moulton niguel water district

CALIFORNIA DATA COLLABORATIVE

in	@MNWDWater	@california-data-collaborative	@swanforum
\mathbb{X}	@MNWDWater	@cadc_io	@SWAN_Forum
\bigoplus	#MNWDWater	#CAWaterDataSummit	#SWANForum

#CaWaterDataSummit #IntelligentQuestioning